Conformations of a long polymer in a melt of shorter chains: Generalizations of the Flory theorem


Large-scale simulations of the swelling of a long N-mer in a melt of chemically identical P-mers are used to investigate a discrepancy between theory and experiments. Classical theory predicts an increase of probe chain size R ∼ P-0.18 with decreasing degree of polymerization P of melt chains in the range of 1 \textless P \textless N1/2. However, both experiment and simulation data are more consistent with an apparently slower swelling R ∼ P-0.1 over a wider range of melt degrees of polymerization. This anomaly is explained by taking into account the recently discovered long-range bond correlations in polymer melts and corrections to excluded volume. We generalize the Flory theorem and demonstrate that it is in excellent agreement with experiments and simulations.